Mangroves of the Mesoamerica Reef Ecoregion

Steve Canty
Smithsonian Marine Station, Marine Conservation Program
Conservation Commons, Working Land and Seascapes
CantyS@si.edu
Mesoamerican Mangrove and Seagrass Network

• For those that would like to subscribe: MesoMSNet@gmail.com

• Extension of the *Healthy Reef for Healthy People Initiative*

• Connecting managers, government agencies, civil society, researchers and scientists

• Increasing knowledge sharing and learning experiences

• Building a map of previous, current and future projects and collaborations
What are mangroves

Diverse group of halophytic (salt-tolerant) plants that exhibit:

1. Complete fidelity to the mangrove environment

2. Contribute a major structural role and can form monospecific stands

3. Exhibit morphological adaptations

4. Have the ability to exclude or exude salt through physiological mechanisms

5. Taxonomic isolation from terrestrial relatives
Mangrove species of the MAR

• Species found in the MAR
 • *Rhizophora mangle*
 • *Avicennia germanins*
 • *Laguncularia racemosa*
 • *Pelliciera rhizophorae* (rare)

• Associate species
 • *Conocarpus erectus*
Mangrove zonation

- Similar zonation patterns seen throughout the MAR
 - Generally forming single species stands

- Rhizophora mangle
- Avicennia germinans
- Laguncularia racemosa
- Tropical mixed forest, may include Conocarpus erectus
Mangrove distribution

- Total mangrove area (2010 estimates)
 - MAR – 239,176 ha

- Distribution of mangroves by country
 - Mexico – 128,049 ha (53.5%)
 - Belize – 74,684 ha (31.3%)
 - Guatemala – 1,170 ha (0.5%)
 - Honduras – 35,273 ha (14.7%)

(Canty et al., 2018)

- Mapping efforts at the global scale
 - https://data.unep-wcmc.org/datasets/4
 - Resolution is low and underestimates distribution
Review of Mangrove management

• Management frameworks

• Identification of key threats

• Disconnection between managers and researchers

• Status of mangroves
Governance

• Stringent legislation
 • Legally protected in all four countries
 • 42 Protected areas

• National governance frameworks are complex

• Countries not aligned on regional and international agreements

• Lack of resources - the major cause of protected area failure (Gill et al., 2017)

(Canty et al., 2018)
Threats to mangroves in the MAR

Managers

Researchers

(Canty et al., 2018)
Stakeholder disconnect

• Differences in perceptions and focus of key threats to mangroves
 • Managers – localized anthropogenic disturbances
 • Researchers – global climate change

• How do we ensure science-based management?

(Canty et al., 2018)
Status of MAR mangroves

• 30% loss in cover regionally from 1990 to 2010

• Regional mean loss rate: 5,292 hectares per year

• Why do we want to address this decline?

(Canty et al., 2018)
Mangrove importance

Biodiversity – mangrove ecosystem complex
- Canopy
- Benthos
- Root system
- Tidal waters
- Connectivity with other ecosystems
- Genetic diversity

Ecosystem services
- Supporting
- Provisioning
- Regulatory
- Cultural

Human well-being – high quality of life
- Health
- Food security
- Security
- Economic base
Biodiversity

• Canopy
 • e.g. Birds, reptiles, insects, mammals

• Benthos
 • e.g. Crabs, molluscs, gastropods

• Root systems
 • e.g. Algae, corals, tunicates, molluscs

• Tidal waters
 • e.g. Fin fish, crustaceans, marine mammals

• Connectivity to other ecosystems
 • e.g. Coral reefs and seagrasses, terrestrial forests

• Genetic diversity
All of these fish species spend part of their lifecycle within a mangrove forest.
Biodiversity

• Canopy
 • e.g. Birds, reptiles, insects, mammals

• Benthos
 • e.g. Crabs, molluscs, gastropods

• Root systems
 • e.g. Algae, corals, tunicates, molluscs

• Tidal waters
 • e.g. Fin fish, crustaceans, marine mammals

• Connectivity to other ecosystems
 • e.g. Coral reefs and seagrasses, terrestrial forests

• Genetic diversity
Mangrove connectivity

• How genetically diverse are the mangroves in the MAR?
 • Have results from Mexico (Cisneros-de la Cruz et al., 2018)
 • Regional study in progress (Canty et al.,)

• Spatial scales for management
 • Do ecological and management units match?

(Cisneros-de la Cruz et al., 2018)
Ecosystem services

Supporting
- Nutrient cycling
- Sediment accretion
- Primary production

Regulating
- Coastal protection
- Carbon sequestration
- Water purification

Providing
- Fisheries
- Honey
- Medicines

Cultural
- Sacred sites
- Recreation
- Inspiration

Biodiversity plays an important role in the function of ecosystem services.
Valued at **US$ 193,843** per hectare per year (Constanza et al., 2014)
Not all mangroves are equal

• Dwarf mangroves are prevalent within the region
Human well-being

- Extractive activities appear dominant in promoting human well-being
 - e.g. fishing, lumber

- Non-extractive benefits are critical but more difficult to quantify
 - e.g. hurricane and storm protection, coastal protection

- Highly dependent upon biodiversity and functioning of ecosystem services

Diagram:
- Food security
- Economic base
- Health
- Security
Mangrove importance

Biodiversity
- Complex food webs and trophic interactions
- Regulation of ecosystem processes and function
- Genetic diversity an important factor

Ecosystem services
- Important in resilience and adaptation to climate change
- Direct and in-direct benefits – attempts to value all services
- Local and global scales
 - DEPENDENT ON BIODIVERSITY, BUT NOT ALL MANGROVES ARE EQUAL

Human well-being
- Extractive and non-extractive benefits are equally important
- Difficult to quantify and identify with intangible benefits
 - DEPENDENT ON BIODIVERSITY AND ECOSYSTEM SERVICES
Thank you

Steve Canty
Smithsonian Marine Station, Marine Conservation Program
Conservation Commons, Working Land and Seascapes
CantyS@si.edu